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Question:

Is a double pendulum a chaotic system?

Article and how it relates to your experiment:

http://plato.stanford.edu/entries/chaos/
This article has a large amount of information on chaos (from definitions, characteristics, to implications in everyday life). For my experiment, in order to determine whether or not a double pendulum is a chaotic system, I need to see if it has the characteristic discussed in this article, namely sensitivity to initial conditions.

Purpose:

To determine whether or not a double pendulum is a chaotic system by virtually simulating its path, plotting graphs, observing its behaviours (via computer animation), and comparing them with the characteristics of a chaotic system.

Hypothesis:

If a system that is highly sensitive to initial conditions is dynamic, deterministic, and greatly affected by the starting conditions the system; then the double pendulum, a deterministic and dynamic system, should be highly sensitive to initial starting conditions since its added variables (from the second rod and mass) give the system much more possible states and make its starting conditions very difficult to recreate. The difference between the double pendulums with different initial starting conditions (angles and velocity) should increase as time goes on. 

If a chaotic system is characterized by dense periodic orbits, topologically mixing phase space, and high sensitivity to initial starting conditions; and a double pendulum has the first two characteristics and should be highly sensitive to initial starting conditions according to the reasoning above; then a double pendulum should meet all three characteristics and be considered a chaotic system.

Independent Variable: Initial starting conditions (angle or velocity).

Dependent Variable: Path of double pendulum. 

Controlled Variables: Method of calculation (computer), application used for animation (Mathematica), application used for tables and line graphs (Excel), numeric values of terms not altered as an initial starting condition (such as rod length and mass weight). 
Introduction – CHAOS IN THE WORLD:

It all started with a short story titled “The Butterfly Effect.” I came across it one day and really enjoyed it, and decided to research more about what exactly the butterfly effect was. Like most people, I had only heard about the butterfly effect in a metaphorical and literary sense – something small can lead to a series of changes that eventually results in a big change. I started reading articles about it, and I soon realized that the metaphorical interpretation was in fact very similar to the scientific derivation. However, to explain this further, I will zoom out to the chaos theory, which is what the butterfly effect is part of.

To understand the chaos theory, one would first have to understand what dynamical and deterministic systems are. A dynamical system is a mathematical concept where state changes over time in geometrical space according to a fixed rule. In other words, the dependency on time a position of a point has is expressed by a function. For example, in the case of a deterministic system such as a pendulum, a function can be used to calculate the state of a pendulum (angle and angular velocity) at any given instant. However, this is also because a pendulum is a deterministic system, as opposed to a random system, meaning that each starting point can have only one outcome so it is predictable if you know the initial starting conditions. 

The chaos theory studies the behaviour of deterministic dynamical systems that have these three characteristics: dense periodic orbits, topologically mixing phase space, and high sensitivity to initial conditions. However, while there is some more information about the first two characteristics in my discussion, my main focus is on high sensitivity to initial starting conditions.

High sensitivity to initial starting conditions is when a minute change in these conditions will yield a significantly different result. This sensitivity is what we know as the butterfly effect. It was named for the ability of a seemingly small event (such as the flap of a butterfly’s wings) to, by altering the initial starting conditions of, have a great effect on a large event (such as the path of a tornado). However, due to this sensitivity, we cannot predict the future of a chaotic system despite them being deterministic. In fact, it is because of their sensitivity to their deterministic nature that they are unpredictable. Their heavy dependency on the preciseness of initial starting conditions drives the need for exactness to a precision we cannot pinpoint, rendering chaotic systems virtually impossible to recreate. For a double pendulum, this means that a miniscule difference in the initial angle or velocity can result in a drastically different path. 

For my project, I decided to determine whether or not a double pendulum is a chaotic system by observing its behaviours (via computer simulation) and comparing them with the characteristics of a chaotic system. In order to classify a system as chaotic, it must fit the three requirements above. However, for my experiment, I will only be focusing on high sensitivity to initial starting conditions for the sake of time. I’ve researched the topological transitivity and periodic orbit density of a double pendulum, and it meets both requirements. In my hypothesis, I will assume that these are true. For a double pendulum, a high sensitivity to initial starting conditions would mean that the difference in the paths taken by two pendulums with different initial starting angles/velocity must increase as time goes on. I chose a double pendulum because it seemed to be the most plausible choice due to its accessibility (as it is possible to do it virtually) and simplicity compared to other systems.



 
Tuesday, December 16th:
Materials:

· Computer (1)

· Internet

· Wolfram Mathematica (a technical computing app)

· A manipulative parametric plot of a double pendulum (*script by Brian Weinstein below)

· A plot that shows the difference between the angles of mass one and mass two of two double pendulums with different initial starting conditions over time. (**)
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*Parametric Plot of Double Pendulum

Term Values:
x1[t_] := R1*Sin[\[Theta]1[t]]
y1[t_] := (-R1)*Cos[\[Theta]1[t]]
x2[t_] := R1*Sin[\[Theta]1[t]] + R2*Sin[\[Theta]2[t]]
y2[t_] := (-R1)*Cos[\[Theta]1[t]] - R2*Cos[\[Theta]2[t]]
v1[t_] := Sqrt[D[x1[t], t]^2 + D[y1[t], t]^2]
v2[t_] := Sqrt[D[x2[t], t]^2 + D[y2[t], t]^2]

T1[t_] := (1/2)*m1*v1[t]^2
T2[t_] := (1/2)*m2*v2[t]^2
U[t_] := m1*g*y1[t] + m2*g*y2[t]
L[t_] := T1[t] + T2[t] - U[t]

Script:
Simplify[D[LB[t], \[Theta]1B[t]] == 
   D[D[LB[t], Derivative[1][\[Theta]1B][t]], t]];
Simplify[D[LB[t], \[Theta]2B[t]] == 
   D[D[LB[t], Derivative[1][\[Theta]2B][t]], t]];

\[Theta]10 = Pi/2.01;
\[Theta]1d0 = 0;
\[Theta]20 = Pi/2.01;
\[Theta]2d0 = 0;

g = 9.8;
R1 = 0.7;
R2 = 0.7;
m1 = 1;
m2 = 1;

sols = NDSolve[{R1*(g*m1*Sin[\[Theta]1[t]] + g*m2*Sin[\[Theta]1[t]] + 
        m2*R2*Sin[\[Theta]1[t] - \[Theta]2[t]]*
         Derivative[1][\[Theta]2][t]^2 + (m1 + m2)*R1*
         Derivative[2][\[Theta]1][t] + 
        m2*R2*Cos[\[Theta]1[t] - \[Theta]2[t]]*
         Derivative[2][\[Theta]2][t]) == 0, 
    m2*R2*(g*Sin[\[Theta]2[t]] - 
        R1*Sin[\[Theta]1[t] - \[Theta]2[t]]*
         Derivative[1][\[Theta]1][t]^2 + 
        R1*Cos[\[Theta]1[t] - \[Theta]2[t]]*
         Derivative[2][\[Theta]1][t] + 
        R2*Derivative[2][\[Theta]2][t]) == 
     0, \[Theta]1[0] == \[Theta]10,  
 Derivative[1][\[Theta]1][0] == \[Theta]1d0, \[Theta]2[
      0] == \[Theta]20, 
    Derivative[1][\[Theta]2][0] == \[Theta]2d0}, {\[Theta]1, 
    Derivative[1][\[Theta]1], Derivative[2][\[Theta]1], \[Theta]2, 
    Derivative[1][\[Theta]2], Derivative[2][\[Theta]2]}, {t, 0, 490}, 
   MaxSteps -> 100000];

\[Theta]1n[t_] := Evaluate[\[Theta]1[t] /. sols[[1, 1]]]
\[Theta]2n[t_] := Evaluate[\[Theta]2[t] /. sols[[1, 4]]]
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\[Theta]d1n[t_] := 
 Evaluate[Derivative[1][\[Theta]1][t] /. sols[[1, 1]]]
\[Theta]d2n[t_] := 
 Evaluate[Derivative[1][\[Theta]2][t] /. sols[[1, 4]]]

x1n[t_] := R1*Sin[\[Theta]1n[t]]
y1n[t_] := (-R1)*Cos[\[Theta]1n[t]]
x2n[t_] := R1*Sin[\[Theta]1n[t]] + R2*Sin[\[Theta]2n[t]]
y2n[t_] := (-R1)*Cos[\[Theta]1n[t]] - R2*Cos[\[Theta]2n[t]]

Manipulate[
 Show[ParametricPlot[{{x1n[t], y1n[t]}, {x2n[t], y2n[t]}}, {t, 0, tf},
    PlotStyle -> {{Red}, {Blue}}, AspectRatio -> Automatic, 
   PlotRange -> {{-R1 - R2, R1 + R2}, {-R1 - R2, (R1 + R2)/3.5}}, 
   Axes -> True, GridLines -> Automatic, 
   GridLinesStyle -> Directive[LightGray]], 
  Graphics[{{AbsoluteThickness[2], Red, 
     Line[{{0, 0}, {x1n[tf], y1n[tf]}}]}, {AbsoluteThickness[2], Blue,
      Line[{{x1n[tf], y1n[tf]}, {x2n[tf], y2n[tf]}}]}, {PointSize[
      Large], Red, Point[{x1n[tf], y1n[tf]}]}, {PointSize[Large], 
     Blue, Point[{x2n[tf], y2n[tf]}]}}]], {tf, 0.01, 30, 0.1}]
Procedure 

Part 1 – Parametric Plot:
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Find a manipulatable parametric plot of the double pendulum. Make sure the plot allows you to change the initial starting angles, find the coordinates, and alter the duration of the animation. *
2. Change the plot to show at least 30 seconds of the pendulum’s path.

3. Input π/2 as the initial angle for both (the angle of mass one) θ1 and (the angle of mass two) θ2.   
4. Observe and record the path of the pendulum. 
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Record the coordinate plane positions of mass 1 and mass 2 at 5, 10, 20, and 30 seconds. 

6. Run the experiment again and see if there have been any changes.

7. Repeat steps 2 to 5 but alter the initial angle by a ten thousandth (π/2 ( π/2.0001), a thousandth (π/2.001), and a hundredth (π/2.01).
8. Observe the paths taken and compare them.

Part 3 - Determining the chaotic nature:
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1. Give all the variables numeric values:

· g = 9.8

· L1 = 0.7

· L2 = 0.7

· m1 = 1

· m2 = 1

· θ1 = π

· θ2 = 0
· θ1d0 = 0
· θ2d0 = 3.0
2. Find a plot that shows the difference between the angles of mass one and mass two of two double pendulums with different initial velocities conditions over time. To do this, the plot must take the difference between mass 1 of both pendulums, repeat the process with mass 2, and take the logarithms of these two differences and plot them as a function of time. *

3. Change the velocity of the θ2d0 to 3.0 for the first double pendulum on the plot. For the second double pendulum, change it to 3.1. Now that the pendulums have different initial starting conditions, run the plot.  

4. Repeat step 3 but change the initial velocity by a ten thousandth, a thousandth, and a hundredth.
5. Observe the plots and see if the differences increase, stay the same, or decrease.

Friday, January 23rd
Mass 1: X Coordinate

	Initial Starting Angle
	π/2
	π/2.0001
	π/2.001
	π/2.01

	5 Seconds
	0.68
	0.68
	0.7
	0.7

	10 Seconds
	-0.66
	-0.67
	-0.66
	-0.69

	20 Seconds
	-0.68
	-0.58
	0.26
	0.26

	30 Seconds
	-0.7
	-0.54
	0.45
	0.7


Mass 1: Y Coordinate

	Initial Starting Angle
	π/2
	π/2.0001
	π/2.001
	π/2.01

	5 Seconds
	0.04
	0.04
	0.04
	0.02

	10 Seconds
	0.2
	0.21
	0.24
	0.09

	20 Seconds
	-0.18
	-0.39
	-0.65
	-0.65

	30 Seconds
	0.01
	-0.45
	-0.54
	0.07


Mass 2: X Coordinate

	Initial Starting Angle
	π/2
	π/2.0001
	π/2.001
	π/2.01

	5 Seconds
	1.38
	1.38
	1.38
	1.39

	10 Seconds
	-0.97
	-0.97
	-0.95
	-0.35

	20 Seconds
	-1.01
	-0.75
	-0.27
	-0.17

	30 Seconds
	-0.01
	-1.24
	1.15
	0.53


Mass 2: Y Coordinate

	Initial Starting Angle
	π/2
	π/2.0001
	π/2.001
	π/2.01

	5 Seconds
	-0.1
	-0.1
	-0.1
	-0.09

	10 Seconds
	-0.42
	-0.42
	-0.4
	-0.52

	20 Seconds
	-0.79
	-1.07
	-1.12
	-0.09

	30 Seconds
	-0.07
	-0.38
	-0.51
	-0.6


Difference in Coordinate Plane Positions Graphs:
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2.0 Screenshots:
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2.0001 Screenshots:
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2.001 Screenshots:
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2.01 Screenshots:
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Angle Difference over Time: 
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Wednesday, January 28th
Analysis:
In Tables 1A and 1B, I recorded the coordinate plane position of the first mass (the red bob in the Figures 1-4). In Tables 2A and 2B, I recorded the positions of the second mass (the blue bob in Figures 1-4). I used these tables to create Figures 5 and 6, which show how the differences in coordinate points increase between the control (a double pendulum with a starting angle of π/2) and double pendulums with the other starting angles of 2.0001, 2.001, and 2.01. As you can see, all of these differences increase. This increase shows high sensitivity to initial starting conditions because unlike other systems in which a change will remain constant, a small difference here in initial conditions will continue to grow and eventually have a large impact on the path of the pendulum. For example, the pendulum with the initial starting angle of π/2.0001 took what appears to be the same path as the control for the first 10 seconds, after which the difference started to climb steeply and at 30 seconds there was a 1.25 and 0.31 difference in the x and y coordinates, respectively. Another observation is that the pendulums with a larger difference in the initial starting angle usually increased quicker and more significantly, but that was not true for all of the cases (ex. in Figure 6A π/2.0001 grew the most). This could be due to the dense periodic orbit and topological transitivity of the double pendulum, which allows the states to move arbitrarily close to or far away from a point.
Figures 1-4 show the paths of pendulums with initial starting angles of π/2, π/2.0001, π/2.001, and π/2.01 at 30, 25, 20, 15, 10, 5, and 0.01 seconds. Most of these paths start diverging more visibly after 10 seconds, and as shown by the previous tables and graphs, the paths become more and more different.  
Figures 7A-E show the difference between the angles of mass one and mass two of two double pendulums with different initial velocities of mass two over time. The green is the first mass and the blue is the second. The climb is not very steady, but it does gradually increase as time goes on. The climb is most likely unsteady because of the topologically transitivity and dense periodic orbits of the double pendulum. 
All of these tables and graphs showed an increase in difference over time, proving the sensitivity to initial conditions a double pendulum has. 
Friday, January 30th
Discussion:
In my project, I determined through research and experimentation that a double pendulum is a chaotic system. In order to classify it as such, a double pendulum had be deterministic, dynamic, and have three characteristics: dense periodic orbits, topologically mixing phase space, and high sensitivity to initial conditions. 

Through research, I learnt that double pendulums have a dense periodic orbit. An orbit is collection of points that appear to show a pattern, and when the system is in a state in one orbit, it will never enter another orbit. A periodic orbit is an orbit that repeats. In a dense periodic orbit, every point in a chaotic system is arbitrarily close to a point on a periodic orbit – in other words, the periodic orbits are very dense around the points of the chaotic system and for any distance chosen from a chaotic point, there is a point on a periodic orbit within that distance. For a double pendulum, this means that no two pendulums will be the same, unless all its initial starting conditions were exactly identical and there was no perturbation whatsoever, which is highly improbable. Even though the pendulum may seem to be in a periodic orbit, repeating a pattern, or following the same pattern as another pendulum with different starting conditions (since it is so dense that we cannot tell), it is most likely not and its path could drastically alter any second. 

Also through research, I learnt the double pendulums are topologically transitive. A phase space that is topologically mixing evolves over time so that any region of its phase space will eventually overlap with any other region. This means that any given point, no matter how far apart it is from another given point, will eventually end up arbitrarily close to it. For a double pendulum, this has a similar effect as a dense periodic orbit. Trajectories that are far apart could suddenly fall into a similar pattern.

For the actual experiment, I tested the sensitivity to initial conditions that a double pendulum has. The first part of my hypothesis stated if a system sensitive to initial starting conditions was dynamic, deterministic, and had a path greatly dependent on the starting conditions, then a double pendulum, a deterministic and dynamical system, with the abundance of possible states and its difficulty to recreate due to the second rod and mass, should be sensitive to initial starting conditions. To prove this, I tested the sensitivity of a double pendulum in three ways: 
First, I used a parametric plot that simulated the path of the double pendulum, and recorded the 30-second paths for pendulums with initial starting angles of π/2 (as the control), π/2.0001, π/2.001, and π/2.01 in mass 1 and mass 2. I repeated each simulation three times to verify, and they remained consistent each time since the double pendulum is deterministic, and therefore only one trajectory can result from identical initial starting conditions. By observing the paths, I saw that most of the trajectories remained similar until about 10 seconds, after which they started visibly diverging. I took screenshots of these paths at 0.01, 5, 10, 15, 20, 25, and 30 for every pendulum, yielding Figures 1-4. As time passed, the pendulums became more and more different from π/2. For example, if you compared Figures 1A-1G to 2A-2G (which have an initial difference of only 0.0001), the trajectories start out similar but at 1D and 2D, visible diverges start forming and increase until 1G and 2G, where the differences are much more obvious. This proved that a double pendulum is sensitive to initial starting conditions, since the divergence between the trajectories grew from invisible to fairly obvious, and will continue to grow as time goes on. An increase in difference shows high sensitivity to initial starting conditions because unlike other systems in which a change will remain constant, a small difference here in initial conditions will continue to grow and eventually have a large impact on the path of the pendulum. 
Next, I took the coordinate plane positions of the first (red) and second (blue) mass of Figures 1-4 on 0.01, 5, 10, 15, 20, 25, and 30 seconds. I recorded these separately by mass and axis in Tables 1 and 2. These were used to create Figures 5 and 6, which show how the differences in coordinate points increase between the control (a double pendulum with a starting angle of π/2) and double pendulums with the other starting angles of 2.0001, 2.001, and 2.01. These graphs also increased, showing that the coordinate positions are getting farther away from the control, and therefore the paths are diverging increasingly. While all the graphs showed increase, the pendulums with a larger difference in the initial starting angle usually increased faster and more, although there were some exceptions. This could be because of the dense periodic orbit and topological transitivity of the double pendulum. The trajectories would not have to follow a pattern and could move arbitrarily close to or far away from a point, making them hard to predict and allow a pendulum with a small initial difference to have a path that happens to diverge faster and more significantly. Aside from that, once again, the overall increase in differences proved that the double pendulum is sensitive to initial starting conditions. 
3) Finally, I plotted the difference between the angles of mass one and mass two of two double pendulums with different initial velocities (of the second mass) over time. I varied the velocities by 0.0001, 0.001, 0.01, and 0.1. These graphs also increased over time, albeit not as steadily as the others. While I was only looking for high sensitivity to initial starting conditions, this graph also showed through its constant steep drops and climbs that a double pendulum is also topologically mixing and dense in periodic orbits. The trajectories that were far apart suddenly became arbitrarily close for a while, before suddenly diverging drastically from each other. For example, in Figure 7E, the angle difference between the first masses (green) climbs relatively steadily, but that of the second masses (blue) peaks and plummets, especially between 3000 and 4000 seconds. If the double pendulum was simulated and observed, the paths of the second mass would appear to be the same when the differences reach 0 (appear – since it is most likely not that the paths are identical, but rather that the computer cannot differentiate between such small deviations) during the 3000-4000 seconds for a while, before suddenly dramatically diverging from each other. Apart from that, the differences still increased overall, showing the sensitivity of a double pendulum.
Conclusion:
In conclusion, my entire hypothesis was proven correct. The double pendulum was highly sensitive to initial starting conditions, as shown by the increasing difference between its angles and coordinate positions between a control and variations in initial velocities and angles of 0.0001, 0.001, 0.01, and 0.1. The paths became more and more different over time, and if left to continue, would end up being significantly different from another double pendulum, even if the difference at the beginning was as small as a ten thousandth. Since I had already established through research that a double pendulum was topologically mixing and had a dense periodic orbit, and through my experiment it was shown to be also highly sensitive to initial starting conditions, my hypothesis was verified and a double pendulum was ultimately proven to be a chaotic system. 
Overall, I think my experiment was quite successful. I kept my controlled variables consistent by using my computer for calculation, Mathematica for animation, Excel for tables and line graphs, and gave the terms not altered as an initial starting condition (such as rod length and mass weight) the same numeric value throughout the experiment. The independent variables of initial starting angles and velocities were changed to alter the dependent variable, the path of the double pendulum (from which I obtained the coordinate positions and angle differences). Compared to expected results from books and websites, my results yielded the same conclusion – a double pendulum is indeed a chaotic system. If I could redo the project, I would alter my experiment to include testing topological transitivity and dense periodic orbits, and also perform the same tests I did on a double pendulum to a single pendulum so I would have a better comparison. It would also be interesting to use a physical double pendulum and see how it actually looks in real life. Some possible sources of error could be inaccurate rounding of the decimal points in the coordinate plane table or typos when running the script. Nonetheless, I think the project went quite well and it was a very fun and educational experience!
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**Plot for Difference of Angles��Numerical Values:�g = 9.8;�R1 = 0.7;�R2 = 0.7;�m1 = 1;�m2 = 1;�\[Theta]10 = \[Pi];�\[Theta]1d0 = 0;�\[Theta]20 = 0;�\[Theta]2d0 = 3.02;���Script (pt.1):�\[Theta]2d0a = 3.02;��sols =� NDSolve[�  {R1 (g m1 Sin[\[Theta]1[t]] + g m2 Sin[\[Theta]1[t]] + �       m2 R2 Sin[\[Theta]1[t] - \[Theta]2[t]] Derivative[�         1][\[Theta]2][t]^2 + (m1 + m2) R1 Derivative[2][\[Theta]1][�         t] + m2 R2 Cos[\[Theta]1[t] - \[Theta]2[t]] Derivative[�         2][\[Theta]2][t]) == 0,�   m2 R2 (g Sin[\[Theta]2[t]] - �       R1 Sin[\[Theta]1[t] - \[Theta]2[t]] Derivative[1][\[Theta]1][�         t]^2 + R1 Cos[\[Theta]1[t] - \[Theta]2[t]] Derivative[�         2][\[Theta]1][t] + R2 Derivative[2][\[Theta]2][t]) == �    0, \[Theta]1[0] == \[Theta]10, \[Theta]1'[�     0] == \[Theta]1d0, \[Theta]2[0] == \[Theta]20, \[Theta]2'[�     0] == \[Theta]2d0a}, {\[Theta]1, \[Theta]1', \[Theta]1'', \�\[Theta]2, \[Theta]2', \[Theta]2''}, {t, 0, 4900}, MaxSteps -> 1000000]��\[Theta]1na[t_] := Evaluate[\[Theta]1[t] /. sols[[1, 1]]]�\[Theta]2na[t_] := Evaluate[\[Theta]2[t] /. sols[[1, 4]]]�\[Theta]d1na[t_] := Evaluate[\[Theta]1'[t] /. sols[[1, 1]]]�\[Theta]d2na[t_] := Evaluate[\[Theta]2'[t] /. sols[[1, 4]]]��Script (pt.2):�\[Theta]2d0b = 3.0201��sols =� NDSolve[�  {R1 (g m1 Sin[\[Theta]1[t]] + g m2 Sin[\[Theta]1[t]] + �       m2 R2 Sin[\[Theta]1[t] - \[Theta]2[t]] Derivative[�         1][\[Theta]2][t]^2 + (m1 + m2) R1 Derivative[2][\[Theta]1][�         t] + m2 R2 Cos[\[Theta]1[t] - \[Theta]2[t]] Derivative[�         2][\[Theta]2][t]) == 0,�   m2 R2 (g Sin[\[Theta]2[t]] - �       R1 Sin[\[Theta]1[t] - \[Theta]2[t]] Derivative[1][\[Theta]1][�         t]^2 + R1 Cos[\[Theta]1[t] - \[Theta]2[t]] Derivative[�         2][\[Theta]1][t] + R2 Derivative[2][\[Theta]2][t]) == �    0, \[Theta]1[0] == \[Theta]10, \[Theta]1'[�     0] == \[Theta]1d0, \[Theta]2[0] == \[Theta]20, \[Theta]2'[�     0] == \[Theta]2d0b}, {\[Theta]1, \[Theta]1', \[Theta]1'', \�








�\[Theta]2, \[Theta]2', \[Theta]2''}, {t, 0, 4900}, MaxSteps -> 1000000]��\[Theta]1nb[t_] := Evaluate[\[Theta]1[t] /. sols[[1, 1]]]�\[Theta]2nb[t_] := Evaluate[\[Theta]2[t] /. sols[[1, 4]]]�\[Theta]d1nb[t_] := Evaluate[\[Theta]1'[t] /. sols[[1, 1]]]�\[Theta]d2nb[t_] := Evaluate[\[Theta]2'[t] /. sols[[1, 4]]]���Script (pt.3):��\[CapitalDelta]\[Theta]1[t_] := Abs[\[Theta]1nb[t] - \[Theta]1na[t]]�\[CapitalDelta]\[Theta]2[t_] := Abs[\[Theta]2nb[t] - \[Theta]2na[t]]���Plot[{Log[\[CapitalDelta]\[Theta]1[t]], �  Log[\[CapitalDelta]\[Theta]2[t]], 0}, {t, 0, 4900}, � PlotStyle -> {Blue, Green, Black}, AxesLabel -> {t, \[Theta]}, � PlotRange -> {0, 10}, PlotPoints -> 15, � PlotLabel -> �  "ln(\!\(\*SubscriptBox[\(\[CapitalDelta]\[Theta]\), \(1\)]\)) and \�ln(\!\(\*SubscriptBox[\(\[CapitalDelta]\[Theta]\), \(2\)]\)) for \�Different Initial Conditions"]




















